OTB: logiciel libre de traitement d'images satellites

Traitement d'images de télédetection

M. Grizonnet¹, J. Michel¹, J. Malik², D. Hebrard³

¹CNES, Toulouse, France ²COMMUNICATIONS & SYSTÈMES ³CETE SUD-OUEST

Sommaire

Intro

OTB pour les nuls

Comment l'utiliser?

Quoi de neuf?

OTB par l'exemple

Perspectives

Sommaire

Intro

OTB pour les nuls

Comment l'utiliser?

Quoi de neuf?

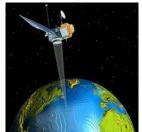
OTB par l'exemple

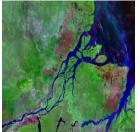
Perspectives

Quoi?

Traitement d'images de télédetection

- Lire images, accéder aux méta-données
- ► Implémenter et distribuer des algorithmes d'extraction d'information pour la Très Haute Résolution Optique → Reproductibilité
- → être capable extraire le plus d'informations des données, algorithmes, . . .





Illustrations

Illustrations

Qu'est-ce que l'ORFEO ToolBox (OTB)?

Développée dans le cadre du programme préparatoire ORFEO - Image Très Haute Résolution (THR)

But

Faciliter le développement et la validation de nouveaux algorithmes (détection, classification, pré-traitement, extraction...)

- ► Librairie C++: beaucoup algorithmes, boîte à outils avec une interface commune
- Open source (licence CeCILL v2 GPL like)
- ▶ Windows, Linux, Unix, Mac OS X

Fin de l'histoire (Happy end) : 2011 - Lancement de Pléiades 1A

Crédits : Pléiades 1A - CNES 2012

Sommaire

Intro

OTB pour les nuls

Comment l'utiliser?

Quoi de neuf?

OTB par l'exemple

Perspectives

Les Lundis de l'Histoire (1)

Au commencement (2006)

- Débute en 2006 au CNES, finance plusieurs développeurs à plein temps Contractants : société C-S SI (Toulouse)
- Cibler sur la THR optique mais avec des applications vers d'autres capteurs (moyenne résolution, radar, hyperspectrale...)
- Budget de 4 ans, plus de 1,000,000€ prolongé jusqu'en 2014

Interface graphique (2008)

- Nombreuses interactions avec utilisateurs finaux → Besoin d'applications pour non développeurs
- Développement applications avec interface graphique depuis 2008
- Sessions de formations en France, Belgique, Madagascar, Paris-UNESCO, Hawaï...

Les Lundis de l'Histoire (2)

Monteverdi (2009)

- ▶ Logiciel modulaire avec interface graphique → Accès faciliter à des fonctionnalités OTB (ORFEO composer)
- Initialement développer dans le cadre de formation Capacity Building)
- Chaîner des traitements de manière interactive
- Demande forte pour ce type d'outils

Communauté SIG (2011)

- Investissement dans la communauté OSGeo
- OTB : fournit des briques de traitements accessibles dans un SIG
- ► Accès à l'OTB *via* le framework **OTB-Applications**
- 1 implémentation → utilisation dans différents contextes
- Exemple : plugins QGIS (via Sextante)
- En parallèle: continue ajouter de nouveaux algorithmes dans la librairie (3D, extraction de primitives, support de nouveaux capteurs, segmentation...)

Pourquoi l'OTB?

Pourquoi le CNES finance l'OTB?

- CNES n'est pas un éditeur de logiciels
- Objectif encourager la Recherche
- le CNES développe des satellites mais veut s'assurer que les images sont utilisées

Succès?

- Communauté des utilisateurs de l'OTB a grandi et s'est diversifiée
- Présentation à IGARSS, ISPRS, OGRS, FOSS4G, FROG...
- CNES souhaite poursuivre les dév. au-delà du programme ORFEO (Juin 2014)
- re-using is powerful

Comment?

Feuille de route

Ne pas ré-inventer la roue

Environnements outils Open Source pour le TI

- ITK: à la base de l'OTB (calcul au flot, parallélisation), nombreux algorithmes de traitements
- ► Gdal : lecture/écriture raster et vecteur (geotiff, raw, png, jpeg, shapefile, ...)
- OpenJPEG: lire/écrire image au format jpeg2000 (utilisé par Pléiades et Sentinel-2)
- Ossim: modèle de capteurs (Spot, RPC, SAR, Pléiades...) et systèmes de projections
- 6S : correction des effets atmosphériques
- et beaucoup d'autres : libLAS (lidar), Edison (segmentation Mean Shift), libSittFast (SIFT), Boost (graph), libSVM (Support Vector Machines), OpenCV (classifieurs)
- ⇒ intégration dans une interface commune

Comment?

Feuille de route Contribution "upstream"

Environnements outils Open Source pour le TI

- ► ITK : retour bugs, évolution, participation feuille de route ITKv4
- Gdal: driver openJPEG, packaging...
- OpenJPEG: Améliorations pour permettre la lecture des images PHR dans OpenJpeg OpenJpeg 2.0 officielle: Gdal, Mapserver, QGIS
- Ossim : modèle de capteurs Pléiades, SAR, packaging. . .
- Sextante : intégration des OTB applications

Philo ⇒ "Upstream First"

Que peut-on faire avec l'OTB?

Beaucoup de choses!

- Lire, écrire, convertir, faire des extraits (formats → Gdal)
- Pré-traitements : affinage, orthorectification, calibration radiométrique, pan-sharpening (capteurs → Ossim)
- Traiter (basique) : seuillage, réduction de dimension, transformée de Fourier ou ondelettes...
- Traiter (avancé): extraction de primitives, segmentation, classification supervisée ou non, analyse objet, 3D...
- Exporter : Google Earth, QGIS...

On code et on documente

- ► Guide du logiciel (+800 pages pdf), voir version en ligne
- CookBook version en ligne pour les non développeurs
- Doxygen : documentation pour les développeurs

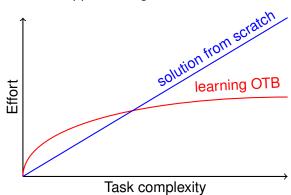
Architecture

Modulaire

Faciliter la combinaison de blocs de traitements

Scalabilité

- Traiter scène complète aux flots transparent utilisateurs (ITK)
- Traitement parallèle transparent utilisateur (ITK)



Courbe d'apprentissage pour les développeurs Programmation C++

- Programmation générique (template)
- Patron de conception (Factory, Functors, Decorators, Smart Pointers, ...)

Courbe d'apprentissage

Trouver de l'aide

Logiciel libre : support de la communauté

- Support utilisateurs : otb-users@googlegroups.com
- Liens
 - ▶ Site web: www.orfeo-toolbox.org
 - ▶ Wiki:wiki.orfeo-toolbox.org
 - Blog:blog.orfeo-toolbox.org
 - Un coup d'oeil au code? hg.orfeo-toolbox.org
 - Un bug? bugs.orfeo-toolbox.org
- Documentation (disponible sur le site web)
 - Documentation API
 - Software Guide (développeurs)
 - Cookbook (non développeurs)

Sommaire

Intro

OTB pour les nuls

Comment l'utiliser?

Quoi de neuf?

OTB par l'exemple

Perspectives

Code

```
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"
#include "itkCannyEdgeDetectionImageFilter.h"
#include "itkRescaleIntensitvImageFilter.h"
int main(int argc, char * argv[])
  typedef double PixelType;
  typedef otb::Image<PixelType>
                                      ImageType;
  typedef unsigned char
       OutputPixelType;
  typedef otb::Image<OutputPixelType>
       Output ImageType;
  typedef otb::ImageFileReader<ImageType>
       ReaderType:
  ReaderType::Pointer reader =
       ReaderType::New();
  reader->SetFileName(argv[1]);
  typedef itk::CannyEdgeDetectionImageFilter
  <ImageType, ImageType> FilterType;
  FilterType::Pointer filter =
       FilterType::New();
```


filter->SetInput(reader->GetOutput());

En utilisant les applications (intégrateurs)

Que sont les Applications?

- Chaînes complètes dédiées à une tâche précise
- Basées sur l'API OTB
- ligne de commande, GUI, Python...

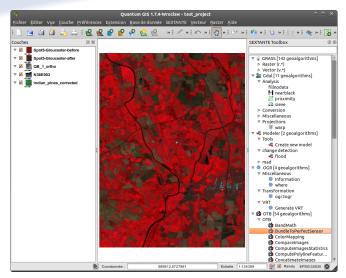
Exemples

- Orthorectification
- Segmentation
- reconstruction 3D
- Classification
- Détection de changements

Actuellement: 75 applications dans l'OTB

OTB applications depuis Python

```
#!/usr/bin/puthon
# Import the otb applications package
import otbApplication
# The following line creates an instance of the ImageSVMClassifier
 application
ImageSVMClassifier =
 otbApplication.Registry.CreateApplication("ImageSVMClassifier")
# The following lines set all the application parameters:
ImageSVMClassifier.SetParameterString("in", "QB_1_ortho.tif")
ImageSVMClassifier.SetParameterString("imstat",
 "clImageStatisticsQB1.xml")
ImageSVMClassifier.SetParameterString("svm", "clsvmModelQB1.svm")
ImageSVMClassifier.SetParameterString("out", "classification.png")
ImageSVMClassifier.SetParameterOutputImagePixelType("out", 1)
# The following line execute the application
ImageSVMClassifier.ExecuteAndWriteOutput()
```



Les applications OTB : interface Qt

9 🛇 () Imag	e SVM	1 Classific	ation - version	3.11.	0		
Para	ameters	Logs	Progress	Documentation				
	✓ Input Image s/otb/src/OTB-Data/Examples/QB_1_ortho.tif							
	□ Input Mask							
W	SVM Model file c/OTB-Data/Examples/clsvmModelQB1.svm							
	Statistics	file						
w/	Output Ir	mage (classificati	on.png		uint 8	▼	
✓	Available	RAM (256	A				
Ready to run								
No	No process Execute							
							_ `	

Les applications OTB : dans QGIS (via Sextante)!

En utilisant Monteverdi (utilisateurs finaux)

Avant 2009

- Pas de logiciel graphique "intégré" pour l'OTB
- Des applications de démonstration

2009 - 2013 : Développement de Monteverdi

- Logiciel graphique modulaire basé OTB
- Financement DSP CNES pour "Capacity building"
- Gros succès (au delà des objectifs initiaux)
- Quelques imitations et manque d'ergonomie

2013 : Refonte en Monteverdi 2.0 (en cours)


- Coeur : bonne visualisation + gestionnaire de collection
- Partie traitement déléguée aux applications OTB

Monteverdi 1 - Fenêtre de visualisation

Monteverdi 2 - version beta 1

Monteverdi 2 - version beta 2 (à paraître en Juin)

Sommaire

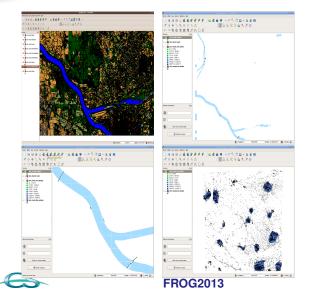
Intro

OTB pour les nuls

Comment l'utiliser?

Quoi de neuf?

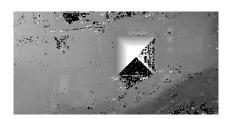
OTB par l'exemple


Perspectives

Segmentation large-échelle : supprimer les effets de tuiles

A venir dans la prochaine version (3.18 en Juin)

- Passerelle vers OpenCV!
- Accès à de nombreuses méthodes de classification
- Intégré dans les applications OTB
- Algorithmes : Random Forest, SVM, Boost, Gradient boosting, Arbre de décision, réseau de neurones, méthode Bayésienne



Stereo reconstruction with OTB

- Stereo-rectification of optical images pair based on sensor model
- Complete spectrum of stereo correspondence algorithms has been published
- Block matching, sub-pixel estimation of disparity, median filter...
- Use SRTM as initial disparity (DEM)
- One click DEM generation

Sommaire

Intro

OTB pour les nuls

Comment l'utiliser?

Quoi de neuf?

OTB par l'exemple

Perspectives

Quelques exemples d'utilisation

- OTB choisie par le CETE (MEEDDTL) pour la télédétection
- OTB utilisée comme moteur de traitement du site web RTU
- ► OTB choisi comme composant de segment sol (Venµs, S2)
- OTB utilisée par le projet GNORASI (www.gnorasi.gr)

Exemple d'étude : caractérisation fine de la densité urbaine

Collaboration CNES OTB RTU - commanditaire : CERTU DGALN – MEDDE

- Besoin institutionnel : acteurs dans le cadre des pol. publiques de l'habitat : lutte contre l'étalement urbain et préservation des espaces naturels et agricoles et résorption de la crise du logement
- Stratégie : densification des cœurs de ville, repérage du foncier mutable (dent creuse)
- besoin de données fiables et récentes et indicateurs de densité

Stratégie en terme de données et outils :

Données libres ou financées pour les institutions (RTU,

Géosud, PTSC, RGE IGN...)

Réalisation de l'étude : PCI-AST CETE SO MEDDE

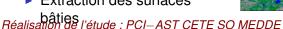
Outils libre : OTB,QGIS,Python...

EROG2013

Caractérisation fine de la densité urbaine

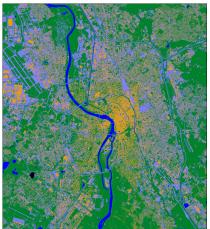
- Acquisition d'une image satellite THRS et d'un MNE issue d'un couple stéréo
- Images de la zone issues du satellite Pléiades THRS (Trés Haute Résolution Spatiale < 1m) -ORFEO-RTU-CNES

Réalisation de l'étude : PCI-AST CETE SO MEDDE

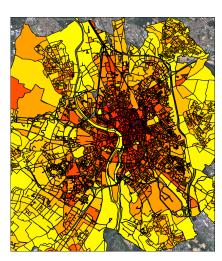


Caractérisation fine de la densité urbaine

 Extraction des données et création d'une carte d'occupation du sol 4 macro classes


Chaîne de traitement OTB :

- Algo OTB SVM par apprentissage
- Fusion des micro classes en macro classes OTB (band math)
- Filtre moyenne
- Extraction des surfaces



Caractérisation fine de la densité urbaine

- Création d'un indicateur de densité
- Densité volumique (croisement surface batie / hauteur des bâtiments MNH=MNE-MNT)

Traitement QGIS:

calcul des volumes par polygone (îlot INSEE)

Réalisation de l'étude : PCI-AST CETE SO MEDDE

Exemple d'étude : caractérisation fine de la densité urbaine

Bilan et perspectives

- Collaboration productive CNES MEDDE(convention)
- ► MEDDE CETE-SO → CNES :retours sur utilisation OTB et formulation des besoins
- ► CNES → MEDDE-CETE SO :enrichissement de la librairie, appui technique...

Au MEDDE CETE SO

- Bon accueil de l'étude
- Demandes des services MEDDE se font de plus en plus nombreuses sur l'utilisation des outils
- ► Volonté de diffusion dans les services (produits, formation,

Sommaire

Intro

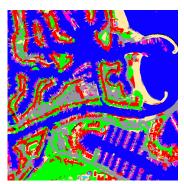
OTB pour les nuls

Comment l'utiliser?

Quoi de neuf?

OTB par l'exemple

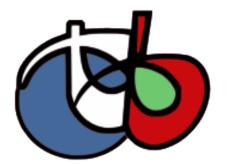
Perspectives



Et maintenant?

- ► OTB va continuer au delà du programme ORFEO (VHR, SAR, MX,HX...)
- ▶ Open software → Open Data maintenant?

Size does matter...


- Données de télédetection de plus en plus accessible...
- ... Mais besoin croissant d'outils performants pour les manipuler
- SMOS : 11 To de données par an
- Sentinel-2 (13 bandes spectrales 10m/60m res.) :acquisition systématique de toutes les Terres tous les 5 jours!
- « Et puis est venue l'idée la plus grandiose de toutes. En fait, nous avons réalisé une carte du pays, à l'échelle d'un mile pour un mile! »

Questions?

ORFEO ToolBox is not a black box

(OTB slideshow)

